Wireless Data Acquisition (wDAQ) System for High Frequency Ultrasound signals

sddec25-06

Team Members: Sam Foster, Merrick Czaplewski, Rocco Yassini, Jerry Liu Advisor: Manojit Pramanik Point of Contact: Avishek Das

Table of contents

- Problem statement
- Requirements and Standards
- Users
 - User Overview
 - User needs
- Detailed Design
- Project Plan
- Testing
- Implementation
- Conclusion
- Questions

Problem Statement

• Photoacoustic Effect

- When a laser shines light pulses onto an object, this stimulates that object to generate ultrasound waves.
- fundamental mechanism behind ultrasound technology.
- Ultrasound transducer
 - an electronic device that converts ultrasound signals into voltage signals.
 - The intensity of the light shined will alter the ultrasound signals magnitude which will in turn affect the voltage signals magnitude.
 - requires an oscilloscope to measure these signals, however, the ultrasound transducer is a rotating device, so a wired oscilloscope would get tangled.

Because of this the client requires a device with the signal displaying capability of an oscilloscope, but is wireless and mobile.

Description of Users (Personas)

-Lab Faculty: Want to be able to conduct experiments using oscilloscopes without the constraints of a wired device. Want to make efficient use of lab space.

-Primary user will be the Lab Technicians in the ultrasound lab.

-Students: Want to use convenient & simple measurement tools to complete their labs.

-Lab Management staff: Want to avoid clutter and make best use of space available.

Requirements and Standards

- Requirements and Constraints
 - Wireless
 - Real-Time transmission
 - Input amplified and filtered
 - Two channels
 - Resolution of display in 12 bits
 - Interface program is LabView
 - Transmission Chip is ESP32

- Standards
 - IEEE 802.11ac Wireless Communication Standard
 - IEEE 1657-2009 Battery Management Standard
 - IEEE 11073 Medical Device Communication Standard
 - ISO 9001 Quality Management Standard
 - ISO/IEC 27001 Information Security Management Standard

User Needs

Wireless & Portable

Replaces BNC cables; supports remote use

Real-Time MHz Acquisition

Fast sampling; supports real-time or buffered mo

Clean & Stable Signal

Low-noise amplification; strong EMI shielding

2 channels/module; supports multi-module setup

User-Friendly GUI

LabVIEW-based interface for control and display

Reliable & Affordable

Stable performance with controlled cost

User Needs- Wireless & Portable

Wireless-

- Due to the spinning nature of the transducer, any sort of cables are a no-go
- Wi-fi or bluetooth connectivities are ideal alternatives, allowing the use of an oscilloscope without the problem of attaching it to a display

Portable-

- Most oscilloscopes are large and bulky (such as the ones used in Coover for the E E 2010 and 2300 labs) which are inconvenient to use on variety of machines
- Making the final product small will massively improve the range of applications the oscilloscope will be usable with, enabling mobility to take to different labs as a personal device

User Needs- Real-Time MHz Acquisition

- The ultrasound transducer emits its signal at very high frequencies
- To accurately sample its signals, it is necessary to use a much faster sampling rate to yield usable data
- 20-25 MHz will be a fast enough sampling rate

User Needs- Clean & stable signal

- The system needs to effectively shield most electromagnetic interference (EMI)
- Complies with appropriate electromagnetic compatibility standards
 - the device will not be subject to excessive interference during wireless transmission
 - doesn't affect surrounding equipment

User Needs- Modular and Scalable

- Two channels/modules
 - Trigger, to keep the waveform stable on the display
 - Acquisition, to collect the data
- This breakdown enhances the device's ability to handle large amounts of data without causing internal interference

User Needs- User-friendly GUI

- User should be able to easily
 - Access the main PCB board
 - Set data with the process coding run what was asked for
 - Read information and data being display
- The main system needs to be easy to
 - Disassemble
 - o Install
 - Move
 - Have stability when rotating at varying speeds
- Users should be able to easily connect to the computer program and view the data.

User Needs- Reliable and Affordable

- Reliability is vital- an unreliable wDAQ is difficult and annoying to use, which would be almost worse than not having one at all
- Other wDAQ devices already exist, none are affordable
 - Most \$1000+
 - Other cheaper options don't have specific or any of the requirements
- The wDAQ made in this project will be very affordable

Detailed Design-Overview

Our project focuses primarily on the later half
ADC to display

Detailed Design- ADC

- Since the measurements are analog, they will need to be converted to a digital signal for display.
- STM Black Pill microcontroller
 - Up to 200 MHz clock speed
 - driving the amplifier and the wi-fi/bluetooth transmission
 - Necessary for the sampling of the already high frequency analog signal with internal clock
- The digital signal will be able to be transmitted wirelessly
- Able to be read by humans, not in 1s and 0s
- For development and prototyping purposes
 - STM Blue Pill microcontroller
 - 20MHz clock speed,
 - Good for creating experimental code
 - Cheaper than black pill
 - Need to be upgraded later

Detailed Design- Wi-fi Transmission & Display

Wireless transmission-

- STM BlackPill does not have native wireless capabilities
- ESP32 microcontroller
 - Only be used for wi-fi
 - Given the converted data from the ADC
 - \circ Wirelessly transmit it to the display

Display-

- LabView
 - Ease of use with programing and testing
 - Voltage waveform graph
 - Amplitude measurements
 - Frequency measurements
- Prototype display is currently being done through Arduino and MATLAB

Task Name	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
ADC Code												
Upgrade clock speed											_	
WiFi												
Format Output												
Present Finished Project												

Due to unforeseen circumstances, the final testing of the upgrades clock will be finished in the fall semester

Project Planning - Task Decomposition

• ADC

- Code for the STM Blue pill
- Altering the code for the STM Black pill
- Wifi/Bluetooth Connection
 - Coding for the ESP32 data transfer chip
- Display
 - LabView display focused on user-friendliness
- Testing
 - Testing the STM Black Pill and ESP32 together
 - Testing all STM Black Pill, ESP32 and full display together

Risk Management

- High quality chips
- Chip compatibility
 - Due to selection being from client, assumed compatibility
- Code malfunctions and damage to hardware
 - Chips can get really hot, especially if programmed wrong
- Amplifier output and input into second system
 - Chips have specific required inputs
- In-depth testing
- Complying to standards

Metrics of Evaluation

- ADC
 - With direct connected display and controlled input
 - Show input data with 95% accuracy
 - Have full graph shown with axis names, title and record length of 50-100 μsec
 - Sampling rate is within 5% accuracy of 20-25 MS/sec
- Wifi/Bluetooth connection
 - With controlled input, not connected to ADC
 - Connects with Display 95% of the time
 - Controlled input, ADC connected
 - Connects with display 95% of the time with above ADC requirements
- Display
 - On it's own
 - 12-bit Resolution
 - Allows for real time transmission
 - Have a record length of more than 100 μsec
 - Ability to show full wave up to ± 2V
 - In connection with ADC and ESP32
 - All of the above requirements

Questions?